Enhancement of glutamate release by L-fucose changes effects of glutamate receptor antagonists on long-term potentiation in the rat hippocampus.
نویسندگان
چکیده
In previous studies L-fucose has been shown to facilitate long-term memory formation and to enhance and prolong long-term potentiation (LTP). To search for possible presynaptic or postsynaptic mechanisms that are affected by L-fucose, we examined the effect of L-fucose on (1) inhibition of LTP induction via glutamate receptors by antagonists, (2) paired-pulse facilitation, and (3) presynaptic transmitter release. Coapplication of 0.2 mM L-fucose with the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonovalerate (AP5), or coapplication of 0.2 mM L-fucose in the presence of an inhibitor for class I/II metabotropic glutamate receptors, (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), reversed LTP blockade in the CA1-region of hippocampal slices. In contrast, L-fucose had no effect on the LTP blockade by the noncompetitive NMDA ion-channel blocker (5R,10S)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK-801). Paired-pulse facilitation, which is a primarily presynaptic phenomenon of short-term plasticity, was decreased in the presence of 0.2 mM L-fucose. Furthermore, L-fucose enhanced the K(+)-stimulated release of [(3)H]-D-aspartate from preloaded hippocampal slices in a concentration-dependent manner. These observations demonstrate an influence of L-fucose on transmitter release that in turn can increase transmitter availability at postsynaptic glutamate receptors. This effect of L-fucose may contribute to the LTP facilitation seen in vitro and in vivo as well as to improvement in memory formation.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملMorphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats
Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...
متن کاملMorphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats
Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...
متن کاملThe effect of glutaminergic system on cardiovascular regulation of rat
Introduction: The bed nucleus stria terminalis (BST) is a part of the limbic system, which plays a role in regulation of heart beat and blood circulation. It was recently shown that microinjection of L-glutamate in the BST elicits cardiovascular depressive, but the role of glutamate receptor subtypes has not been investigated yet. In this study, the role of glutamate receptor subgroups in regul...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Learning & memory
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2000